Home » Publications » Articles, Chapters, Proceedings (Page 3)

Category Archives: Articles, Chapters, Proceedings


Self Tracking
Venture Labor
Surviving the New Economy

Critique and Contribute

What would data science look like if its key critics were engaged to help improve it, and how might critiques of data science improve with an approach that considers the day-to-day practices of data science? This article argues for scholars to bridge the conversations that seek to critique data science and those that seek to advance data science practice to identify and create the social and organizational arrangements necessary for a more ethical data science. We summarize four critiques that are commonly made in critical data studies: data are inherently interpretive, data are inextricable from context, data are mediated through the sociomaterial arrangements that produce them, and data serve as a medium for the negotiation and communication of values. We present qualitative research with academic data scientists, “data for good” projects, and specialized cross-disciplinary engineering teams to show evidence of these critiques in the day-to-day experience of data scientists as they acknowledge and grapple with the complexities of their work. Using ethnographic vignettes from two large multiresearcher field sites, we develop a set of concepts for analyzing and advancing the practice of data science and improving critical data studies, including (1) communication is central to the data science endeavor; (2) making sense of data is a collective process; (3) data are starting, not end points, and (4) data are sets of stories. We conclude with two calls to action for researchers and practitioners in data science and critical data studies alike. First, creating opportunities for bringing social scientific and humanistic expertise into data science practice simultaneously will advance both data science and critical data studies. Second, practitioners should leverage the insights from critical data studies to build new kinds of organizational arrangements, which we argue will help advance a more ethical data science. Engaging the insights of critical data studies will improve data science. Careful attention to the practices of data science will improve scholarly critiques. Genuine collaborative conversations between these different communities will help push for more ethical, and better, ways of knowing in increasingly datum-saturated societies.

Talking to Bots: Symbiotic Agency and the Case of Tay

In 2016, Microsoft launched Tay, an experimental artificial intelligence chat bot. Learning from interactions with Twitter users, Tay was shut down after one day because of its obscene and inflammatory tweets. This article uses the case of Tay to re-examine theories of agency. How did users view the personality and actions of an artificial intelligence chat bot when interacting with Tay on Twitter? Using phenomenological research methods and pragmatic approaches to agency, we look at what people said about Tay to study how they imagine and interact with emerging technologies and to show the limitations of our current theories of agency for describing communication in these settings. We show how different qualities of agency, different expectations for technologies, and different capacities for affordance emerge in the interactions between people and artificial intelligence. We argue that a perspective of “symbiotic agency”— informed by the imagined affordances of emerging technology—is required to really understand the collapse of Tay.

Neff, Gina, and Peter Nagy. “Talking to Bots: Symbiotic Agency and the Case of Tay.” Edited by Samuel Woolley and Philip N. Howard. International Journal of Communication 10, no. Special Issue (2016): 20.

Download this article directly.

Developing a Research Agenda for Human-Centered Data Science

The study and analysis of large and complex data sets offer a wealth of insights in a variety of applications. Computational approaches provide researchers access to broad assemblages of data, but the insights extracted may lack the rich detail that qualitative approaches have brought to the understanding of sociotechnical phenomena. How do we preserve the richness associated with traditional qualitative methods while utilizing the power of large data sets? How do we uncover social nuances or consider ethics and values in data use?


Cecilia Aragon, Clayton Hutto, Andy Echenique, Brittany Fiore-Gartland, Yun Huang, Jinyoung Kim, Gina Neff, Wanli Xing, Joseph Bayer. Developing a Research Agenda for Human-Centered Data Science. Proceeding CSCW ’16 Companion Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion Pages 529-535. ISBN: 978-1-4503-3950-6 doi>10.1145/2818052.2855518

Twitter: ginasue