Books

Self Tracking
Venture Labor
Surviving the New Economy

The Potential of Networked Solidarity

This chapter argues that the concerns of propaganda, voice, and democracy that characterized the rise of communication and media studies as disciplines were anchored in a set of twentieth-century liberal ideals that presumed the key role that information plays in people’s lives. This chapter argues that media and communication scholars need to update their theories for the twenty-first century. Both the election of Trump and the ‘Brexit’ referendum in the UK are case studies how twentieth century ideas about information, media and democracy are no longer sufficient to anchor contemporary media and communication scholarship. This chapter suggests a corrective by means an early twentieth century thinker who has not been used widely in media and communication, Emile Durkheim. By reintroducing the metaphor of organic and mechanical solidarity, this chapter argues that empathy and social cohesion might be alternates for intellectual anchors for our field for the future.

  • Neff, Gina. “The Potential of Networked Solidarity: Communication at the End of the Long Twentieth Century” in Pablo Boczkowski and Zizi Papacharissi, eds. Trump and the Media. MIT Press.

Agency in the Digital Age

Recent advancements in technology challenge our fundamental notions of human power and agency. Tools and techniques including machine learning, artificial intelligence, and chatbots may be capable of exercising complex “agentic” behaviors (Dhar, 2016). Advanced technologies are capable of communicating with human beings in an increasingly sophisticated manner. Ranging from artificial chat partners through the commercial algorithms of social media to cutting-edge robots, these encounters with interactive machines often result in a complex and intimate relationship between users and technologies (Finn, 2017). For instance, people now may have their own virtual assistants such as Apple’s Siri and Amazon’s Alexa. Other commercial technological agents “help” people find new movies on Netflix or friends on Facebook. Robotic companions, like Huggable developed by Cynthia Lynn Breazeal at MIT, can read human emotions and react to them accordingly. Chatbots have long evoked reactions from people that can be used therapeutically for psychological counselling and now these tools are being rolled out as apps to help people cope with anxiety and depression (Lien, 2017; Neff and Nagy, 2016). Such developments present a quandary for scholars of communication. Does the agency of the people and, increasingly, of things that we chose to communicate with matter? This question prompts us to urge communication scholars to develop a better definition of agency and more clarity on how agency is enacted in practice within complex, technologically-mediated interactions.

  • Neff, Gina & Nagy, Peter. “Agency in the Digital Age: Using Symbiotic Agency to Explain Human–Technology Interaction” in Zizi Papacharissi, ed. The Networked SelfHuman Augmentics, Artificial Intelligence, Sentience. Routledge. 

Critique and Contribute

What would data science look like if its key critics were engaged to help improve it, and how might critiques of data science improve with an approach that considers the day-to-day practices of data science? This article argues for scholars to bridge the conversations that seek to critique data science and those that seek to advance data science practice to identify and create the social and organizational arrangements necessary for a more ethical data science. We summarize four critiques that are commonly made in critical data studies: data are inherently interpretive, data are inextricable from context, data are mediated through the sociomaterial arrangements that produce them, and data serve as a medium for the negotiation and communication of values. We present qualitative research with academic data scientists, “data for good” projects, and specialized cross-disciplinary engineering teams to show evidence of these critiques in the day-to-day experience of data scientists as they acknowledge and grapple with the complexities of their work. Using ethnographic vignettes from two large multiresearcher field sites, we develop a set of concepts for analyzing and advancing the practice of data science and improving critical data studies, including (1) communication is central to the data science endeavor; (2) making sense of data is a collective process; (3) data are starting, not end points, and (4) data are sets of stories. We conclude with two calls to action for researchers and practitioners in data science and critical data studies alike. First, creating opportunities for bringing social scientific and humanistic expertise into data science practice simultaneously will advance both data science and critical data studies. Second, practitioners should leverage the insights from critical data studies to build new kinds of organizational arrangements, which we argue will help advance a more ethical data science. Engaging the insights of critical data studies will improve data science. Careful attention to the practices of data science will improve scholarly critiques. Genuine collaborative conversations between these different communities will help push for more ethical, and better, ways of knowing in increasingly datum-saturated societies.

Twitter: ginasue